Model-based constraints on the lunar exosphere derived from ARTEMIS pickup ion observations in the terrestrial magnetotail

نویسندگان

  • A. R. Poppe
  • J. S. Halekas
  • R. Samad
  • M. Sarantos
  • G. T. Delory
چکیده

[1] We use Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) measurements of lunar exospheric pickup ions in the terrestrial magnetotail lobes combined with a particle-tracing model to constrain the source species and distributions of the lunar neutral exosphere. These pickup ions, generated by photoionization of neutral species while the Moon is in the magnetotail lobes, undergo acceleration from both the magnetotail convection electric field and the lunar surface photoelectric field, giving rise to distinct pickup ion flux, pitch angle, and energy distributions. By simulating the behavior of lunar pickup ions in the magnetotail lobes and the response of the twin ARTEMIS probes under various ambient conditions, we can constrain several physical quantities associated with these observations, including the source ion production rate and the magnetotail convection velocity (and hence, electric field). Using the model-derived source ion production rate and established photoionization rates, we present upper limits on the density of several species potentially in the lunar exosphere. In certain cases, these limits are lower than those previously reported. We also present evidence that the lunar exosphere is displaced toward the lunar dawnside while in the terrestrial magnetotail based on fits to the observed pickup ion distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using ARTEMIS pickup ion observations to place constraints on the lunar atmosphere

[1] We present a method for deriving constraints on the structure and composition of the lunar atmosphere by using pickup ion measurements from ARTEMIS, mapping observed fluxes from the spacecraft location to derive production rates at the source region, and fitting to a parameterized neutral atmosphere model. We apply this technique to ~12min of high-resolution burst data collected by ARTEMIS ...

متن کامل

ARTEMIS observations of lunar dayside plasma in the terrestrial magnetotail lobe

[1] We report observations by the dual-probe Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) mission of Moon-related electron and ion signatures obtained above the dayside lunar surface in the terrestrial magnetotail lobes. While the Moon is often thought of as a passive absorber, recent observations from Kaguya, Chandrayaan, Chang’E, ...

متن کامل

ARTEMIS observations of lunar pickup ions: Mass constraints on ion species

[1] Observations of heavy ions of lunar origin give important information regarding lunar exospheric processes, especially with respect to exospheric particle abundance and composition. Electrostatic analyzers without a time-of-flight section provide highly sensitive, absolute density detection but without mass discrimination. Here we place constraints on lunar ion species through inference of ...

متن کامل

Lunar pickup ions observed by ARTEMIS: Spatial and temporal distribution and constraints on species and source locations

[1] ARTEMIS observes pickup ions around the Moon, at distances of up to 20,000 km from the surface. The observed ions form a plume with a narrow spatial and angular extent, generally seen in a single energy/angle bin of the ESA instrument. Though ARTEMIS has no mass resolution capability, we can utilize the analytically describable characteristics of pickup ion trajectories to constrain the pos...

متن کامل

Magnetospheric influence on the Moon’s exosphere

[1] Atoms in the thin lunar exosphere are liberated from the Moon’s regolith by some combination of sunlight, plasma, and meteorite impact. We have observed exospheric sodium, a useful tracer species, on five nights of full Moon in order to test the effect of shielding the lunar surface from the solar wind plasma by the Earth’s magnetosphere. These observations, conducted under the dark sky con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013